### De novo assembly of complex crop genomes Michael Schatz

Oct 18, 2012 PacBio Users Meeting, Menlo Park, CA



@mike\_schatz

### **Plant Genomics**

- Motivations
  - I5 crops provide 90% of the world's food
  - Responsible for maintaining the balance of the carbon cycles, soil from erosion
  - Promising sources of renewable energy
  - Plant byproducts used in many medicines
  - Model organisms for studying biological systems
- Goals
  - Understand basis of differences among subpopulations and varieties (duplications, CNVs, etc.) that lead to important phenotypes
  - Many of these differences relate to ability to grow in less than optimum conditions
    - Drought, aluminum tolerance, etc





### Why are plant genomes hard to assemble?

- **I.** Biological:
  - (Very) High ploidy, heterozygosity, repeat content

#### 2. Sequencing:

- (Very) large genomes, imperfect sequencing

### **3.** Computational:

- (Very) Large genomes, complex structure

### **4.** Accuracy:

- (Very) Hard to assess correctness



# Ingredients for a good assembly



#### High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly





### Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

#### Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

**Current challenges in de novo plant genome sequencing and assembly** Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

### Hybrid Sequencing





**Illumina** Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

#### Pacific Biosciences

SMRT Sequencing

Lower throughput (600Mbp/day) Lower accuracy (~85%) Long reads (2-5kbp+)

# PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
  - I. Map short reads to long reads
  - 2. Trim long reads at coverage gaps
  - 3. Compute consensus for each long read



2. Error corrected reads can be easily assembled, aligned



Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

# **SMRT-Assembly Results**



Organism

Technology

| Lambda NEB3011              | Illumina 100X 200bp                                        | 48 502     | 48 492        | 1      | 48 492 / 48 492   | 48 492 / 48 492 (100%) *    |
|-----------------------------|------------------------------------------------------------|------------|---------------|--------|-------------------|-----------------------------|
| (median: 727 max: 3 280)    | PacBio PBcR 25X                                            |            | 48 440        | 1      | 48 444 / 48 444   | 48 444 / 48 440 (100%) *    |
| E.coli K12                  | Illumina 100X 500bp                                        | 4 639 675  | 4 462 836     | 61     | 221 615 / 221 553 | 100 338 / 83 037 (82.76%) * |
| (median: 747 max: 3 068)    | PacBio PBcR 18X                                            |            | 4 465 533     | 77     | 239 058 / 238 224 | 71 479 / 68 309 (95.57%) *  |
|                             | Both 18X PacBio PBcR + Illumina 50X 500bp                  |            | 4 576 046     | 65     | 238 272 / 238 224 | 93 048 / 89 431 (96.11%) *  |
| E. coli C227-11             | PacBio CCS 50X                                             | 5 504 407  | 4 917 717     | 76     | 249 515           | 100 322                     |
| (median: 1 217 max: 14 901) | PacBio 25X PBcR (corrected by 25X CCS)                     |            | 5 207 946     | 80     | 357 234           | 98 774                      |
|                             | Both PacBio PBcR 25X + CCS 25X                             |            | 5 269 158     | 39     | 647 362           | 227 302                     |
|                             | PacBio 50X PBcR (corrected by 50X CCS)                     |            | 5 445 466     | 35     | 1 076 027         | 376 443                     |
|                             | Both PacBio PBcR 50X + CCS 25X                             |            | 5 453 458     | 33     | 1 167 060         | 527 198                     |
|                             | Manually Corrected ALLORA Assembly <sup>9</sup>            |            | 5 452 251     | 23     | 653 382           | 402 041                     |
| S. cerevisiae S228c         | Illumina 100X 300bp                                        | 12 157 105 | 11 034 156    | 192    | 266 528 / 227 714 | 73 871 / 49 254 (66.68%) *  |
| (median: 674 max: 5 994)    | PacBio PBcR 13X                                            |            | 11 110 420    | 224    | 224 478 / 217 704 | 62 898 / 54 633 (86.86%) *  |
|                             | Both PacBio PBcR 13X + Illumina 50X 300bp                  |            | 11 286 932    | 177    | 262 846 / 260 794 | 82 543 / 59 792 (72.44%) *  |
| Melopsittacus undulatus     | Illumina 194X (220/500/800 paired-end 2/5/10Kb mate-pairs) | 1.23 Gbp   | 1 023 532 850 | 24 181 | 1 050 202         | 47 383                      |
|                             | 454 15.4X (FLX + FLX Plus + 3/8/20Kbp paired-ends)         |            | 999 168 029   | 16 574 | 751 729           | 75 178                      |
| (median 997, max 13 079)    | 454 15.4X + PacBio PBcR 3.75X                              |            | 1 071 356 415 | 15 081 | 1 238 843         | 99 573                      |

Reference bp

Assembly bp # Contigs Max Contig Length

N50

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case

# Transcript Alignment



- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
  - Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
  - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

#### PacBio Technology Roadmap



Internal Roadmap has made steady progress towards improving read length and throughput

Very recent improvements:

I. Improved enzyme: Maintains reactions longer

- "Hot Start" technology: Maximize subreads
  - MagBead loading: Load longest fragments



PACIFIC BIOSCIENCES® CONFIDENTIAL

# Population structure in Oryza sativa

3 varieties selected for de novo sequencing

#### **IR64**



Genome Characteristics

- 440 Mbp genome
- About 40% repeats
- Relatively easy to get high quality DNA
- High quality, BAC by BAC reference available for Nipponbare
- Useful model for other cereal genomes

#### Nipponbare



# **Preliminary Rice Assemblies**



In collaboration with McCombie & Ware labs @ CSHL

### Long Read CNV Analysis

Aluminum tolerance in maize is important for drought resistance and protecting against nutrient deficiencies

- Segregating population localized a QTL on a BAC, but unable to genotype with Illumina sequencing because of high repeat content and GC skew
- Long read PacBio sequencing corrected by CCS reads revealed a triplication of the ZnMATEI membrane transporter



A rare gene copy-number variant that contributes to maize aluminum tolerance and adaptation to acid soils

Maron, LG et al. (2012) Under review.

### Wheat Sequencing

Aegilops tauschii





- One of the most important cereal crops in the world
- A. tauschii is one of the three ancestral species (DD) in modern bread wheat (*Triticum aestivum*)
  - Also looking to sequence other 2 species, and bread wheat
  - ~4.5Gbp Genome Size

#### In Collaboration with McCombie and Ware labs

### Wheat Sequencing & Assembly

| Technology | Read Length | Fragment Length | Coverage |
|------------|-------------|-----------------|----------|
| Illumina   | 100 bp      | 180 bp          | 69x      |
|            | 100 bp      | 300 bp          | 50x      |
|            | 35 bp       | 2,000 bp        | 6.6x     |
|            | 35 bp       | 5,000 bp        | 6.5x     |

| Assembly  | Count   | Max      | N50    | Sum            |
|-----------|---------|----------|--------|----------------|
| Scaffolds | 97,313  | 2.76 Mbp | 23,193 | I.36 Gbp (30%) |
| Contigs   | 556,767 | 165 kbp  | 4,623  | 928 Mbp (20%)  |

- Poor coverage of the genome due to extreme repeat content
  - Had to downsample reads to fit into RAM
  - Randomly discard reads covered by kmers that occur more than 500 times
- Ramping up for PacBio long reads

# Assembly Summary



Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Read length: longer reads resolve repeats and complex regions
- 3. Read Quality: need clean libraries, clean reads
- PacBio RS has capabilities not found in any other technology
  - Substantially longer reads -> span repeats
  - Unbiased sequence coverage -> close sequencing gaps
  - Single molecule sequencing -> haplotype phasing, alternative splicing
- PacBio enables highest quality de novo assembly
  - Longer reads have fundamentally more information than shorter reads
  - Because the errors are random we can compensate for them informatically
  - Software available open source at http://wgs-assembler.sf.net

### Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus Rob Aboukhalil Mitch Bekritsky Charles Underwood James Gurtowski Alejandro Wences

Hayan Lee Rushil Gupta Avijit Gupta Shishir Horane Deepak Nettem Varrun Ramani Eric Biggers CSHL Hannon Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

<u>NBACC</u> Adam Phillippy Sergey Koren

<u>Cornell</u> Lyza Maron

Everyone at PacBio



# Thank You!

http://schatzlab.cshl.edu/